Lignin peroxidase structure and function.

نویسندگان

  • K Piontek
  • A T Smith
  • W Blodig
چکیده

Lignin peroxidase (LiP) plays a central role in the biodegradation of the plant cell wall constituent lignin. LiP is able to oxidize aromatic compounds with redox potentials higher than 1.4 V (NHE) by single electron abstraction, but the exact redox mechanism is still poorly understood. The finding in our laboratory that the Cbeta-atom of Trp171 carries a unique modification led us to initiate experiments to investigate the role of this residue. These experiments, employing crystallography, site-directed mutagenesis, protein chemistry, spin-trapping and spectroscopy, yielded the following results: (i) Trp171 is stereospecifically hydroxylated at its Cbeta-atom as the result of an auto-catalytic process, which occurs under turnover conditions in the presence of hydrogen peroxide. (ii) Evidence for the formation of a Trp171 radical intermediate has been obtained using spin-trapping, in combination with peptide mapping and protein crystallography. (iii) Trp171 is very likely to be involved in electron transfer from natural substrates to the haem cofactor via LRET. (iv) Mutagenetic substitution of Trp171 abolishes completely the oxidation activity for veratryl alcohol, but not for artificial substrates. (v) Structural changes in response to the mutation are marginal. Therefore the lack of activity is due to the absence of the redox active indole side chain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A review on plant peroxidases

Plant peroxidase (EC: 1.11.1.7) a heme-containing protein which is widely used in plants, microorganisms and animals. This two - substrate enzyme, catalyze the hydrogen peroxide into water with   oxidation of many organic and inorganic substrates that all of them can be used to measure enzyme activity. Although it’s specific substrate is hydrogen peroxide. Calcium and at least four disulfide bo...

متن کامل

Enzymatic Degradation of Lignin in Soil: A Review

Lignin is a major component of soil organic matter and also a rich source of carbon dioxide in soils. However, because of its complex structure and recalcitrant nature, lignin degradation is a major challenge. Efforts have been made from time to time to understand the lignin polymeric structure better and develop simpler, economical, and bio-friendly methods of degradation. Certain enzymes from...

متن کامل

Determination of lignin-modifying enzymes (LMEs) in Hyphodermella species using biochemical and molecular techniques

White-rot basidiomycetes are one of the most important lignolytic microorganisms. These fungi have been reported to secrete three main classes of lignin degrading enzymes: lignin peroxidases (LiPs), manganese peroxidases (MnPs) and laccases. In this study, for the first time the lignin degrading capability of two plant pathogens i.e. Hyphodermella rosae and H. corrugata was evaluated using both...

متن کامل

Polymerization of monolignols by redox shuttle-mediated enzymatic oxidation: a new model in lignin biosynthesis I.

Lignin is one of the most abundant biopolymers, and it has a complex racemic structure. It may be formed by a radical polymerization initiated by redox enzymes, but much remains unknown about the process, such as how molecules as large as enzymes can generate the compact structure of the lignified plant cell wall. We have synthesized lignin oligomers according to a new concept, in which peroxid...

متن کامل

Crystal structure of lignin peroxidase.

The crystal structure of lignin peroxidase (LiP) from the basidiomycete Phanerochaete chrysosporium has been determined to 2.6 A resolution by usine multiple isomorphous replacement methods and simulated annealing refinement. Of the 343 residues, residues 3-335 have been accounted for in the electron density map, including four disulfide bonds. The overall three-dimensional structure is very si...

متن کامل

The crystal structure of ascorbate and manganese peroxidases: the role of non-haem metal in the catalytic mechanism.

First, the enzyme reacts with one peroxide equivalent resulting in oxidation of the haem iron to the oxyferryl, Fe(IV-0), centre and an organic radical, R', where R' is either the porphyrin or an amino acid-centred radical. Next, Compound I oxidizes one substrate molecule to give a substrate radical and Compound 11. Finally, Compound I1 is reduced by a second substrate molecule to the resting, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 29 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2001